Composition De Sciences Physiques (2^esemestre) Durée: 04heures

EXERCICE N°1 (02,5 points)

L'acide butyrique de formule semi développée $CH_3CH_2CH_2COOH$, est connu pour son odeur désagréable de beurre rance. Sa réaction avec le méthanol

(CH₃OH) permet d'obtenir un composé E dont l'odeur et le goût sont au contraire très agréables, d'où son utilisation dans l'industrie alimentaire ou la parfumerie.

- 1-1. Donner le nom systématique de l'acide butyrique.
- 1-2. Ecrire l'équation bilan de la réaction entre l'acide butyrique et le méthanol.
- 1-3. Donner le nom de la fonction chimique caractéristique du composé E. Nommer E. On souhaite réaliser la synthèse du composé E; pour cela, on dispose d'une masse $m_A = 330$ g d'acide butyrique.
- **1-4.** Calculer la masse de méthanol qu'il faut mettre en œuvre pour mener la réaction dans des conditions stœchiométriques.
- 1-5. le rendement de la réaction est de 67% ; calculer la masse du produit E obtenu.

EXERCICE 2: (03,5 points)

On dispose d'un mélange de propan-1-ol (noté A) et propan-2-ol (noté B) dont la masse totale est de 18g.

- 2-1. Ecrire le formules semi-développées de ces deux alcools. Préciser leur classe
- **2-2.**On procède à l'oxydation mélangée, en mil'eu acide, de ce mélange par une solution aqueuse de permanganate de potassium en excès. On admet que A ne donne que l'acide C. B donne D.
- **2-2-1.** Ecrire les formules semi-développées de C et D. les nommer.
- 2-2-2. Quels tests permettent de caracionser la fonction chimique de D sans ambiguïté?
- **3-3**. On sépare C et D par un procédé con/enable. On dissout C dans l'eau et on complète le volume à 100ml. On prélève 100ml de la solution obtenue que l'on dose par une solution de soude à 1 mol/l. l'équivalence acide basique est obtenus quand on a versé 11,3ml de soude.

Déterminer la composition du mélange initial, par exemple en calculant les masses de A et B.

 $Mc = 12g. \text{ mol}^{-1}$ $M_H = 1.\text{mol}^{-1}$ $M_O = 16g.\text{mol}^{-1}$.

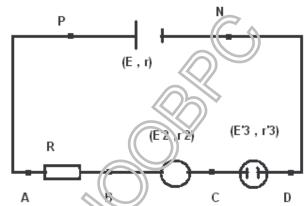
EXERCICE N°3 (03 points)

Dans un repère R(O, i, j) On place deux charges ponctuelles q_1 =6pc, q_2 =-3pc respectivement en A(1,1) ;B(-1,-1) L'unité de longueur est le cm.

- **3-1.** Déterminer la valeur du champ électrostatique
- **3-1-1.** Au point M_1 (1,-1).
- **3-1-.2.**:Au point M_2 (-2,-2).
- **3-2.** Montrer qu'il existe un point N ou le champ produit par les deux charges est nul, déterminer ses coordonnées.

EXERCICE N °4 (04 points)

Soit un pendule électrique de masse m=1g et de charge $q=\sqrt{3}\ 10^{-6}c$


On place ce pendule entre deux plateaux Conducteurs parallèles et verticaux A et B on note la ddp entre les deux plateaux A et B par $U=V_A-V_B$.

- **4-1.**Le pendule dévie d'un angle α par rapport à la verticale, en s'éloignant du plateau A, la distance entre A et B est d=10cm.
- 4-1-1. faire un schéma clair en respectant toutes forces qui s'exercent sur la masse m.
- **4-1-2.**: Montrer par un raisonnement clair le quel des deux plateaux est au potentiel le plus élevé.
- **4-2.** Sachant que l'angle $.\alpha = 60^{\circ}$. Déterminer l'intensité de la force électrostatique //F//. En déduire //E//
- **4-3.**Déterminer alors U.
- 4-4. Le déplacement du pendule sera noté x, la longueur du pendule est l =10cm.
- 4-4-1.: Déterminer x.
- 4-4-2. Déterminer le travail de la force électrostatique au cours du déplacement x.

EXERCICE N°5 (07 points)

On réalise le montage suivant :

Données : E = 12V ; E'₂ = 6V ; E'₃ = 4V R = 1,5 Ω , r'₂ = 0,5 Ω , r'₃ = 1 Ω , R = 5 Ω L'interrupteur k étant fermé.

- **5-1.** Exprimer en fonction des données et de I l'intensité du courant électrique, les tensions U_{PN} , U_{AB} , U_{BC} et U_{CD} .
- 5-2. Faire le schéma et représenter les tensions U_{DN}, U_{AB}, U_{BC} et U_{CD} par des flèches
- **5-3.**En utilisant la loi d'additivité des tensions, calculer l'intensité I du courant électrique.
- 5-4. Calculer
- **5-4-1.** La puissance électrique engendrée P_e par le générateur.
- 5-4-2. La puissance électrique disponible aux bornes du générateur.
- 5-4-3. La puissance reçue P_{r3} par l'électrolyseur et la puissance utile P_{u3} transformée par les réactions chimiques. En déduire le rendement ρ_3 de l'électrolyseur.
- **5-4-4.** Calculer le rendement ρ du générateur et celui ρ' du circuit.
- **5-5.** Le moteur tourne à la vitesse de rotation de 720 tr/mn. Quel est le moment M du couple moteur ?
- **5-6.** On plonge le résistor dans un calorimètre. Pendant combien de temps faut-il faire passer le courant d'intensité I dans le résistor pour faire passer 25mL d'eau de t_1 = 25°C à t_2 = 35°C en négligeant la capacité calorifique du calorimètre qui contient l'eau. **Données** : C_{eau} = 4.180 J. kg^{-1} K^{-1} .

Dominees . Ceau - 4.100 5. kg K .